
Parallel programming

V. Balaji and Rusty Benson
NOAA/GFDL and Princeton University

SSAM 2012
17 July 2012

1

Overview

• Models of concurrency

• Overview of programming models: shared memory, distributed memory with
remote memory access, message-passing

• Overview of the MPI programming interface

• Parallel programming considerations: communication and synchronization,
domain decomposition

• Analyzing parallel algorithms: advection equation, Poisson equation

• Current research in parallel programming models

2

Sequential computing

The von Neumann model of computing conceptualizes the computer as consist-
ing of a memory where instructions and data are stored, and a processing unit
where the computation takes place. At each turn, we fetch an operator and its
operands from memory, perform the computation, and write the results back to
memory.

a = b + c

P R M

3

Computational limits

The speed of the computation is constrained by hardware limits:

• the rate at which instructions and operands can be loaded from memory,
and results written back;

• and the speed of the processing units. The overall computation rate is lim-
ited by the slower of the two: memory.

Latency time to find a word.

Bandwidth number of words per unit time that can stream through the pipe.

4

Hardware trends

A processor clock period is currently ∼ 0.5-1 ns, “Moore’s Law” time constant is
4×/3 years.

RAM latency is ∼ 30 ns, Moore’s constant is 1.3×/3 years.

Maximum memory bandwidth is theoretically the same as the clock speed, but
far less for commodity memory.

Furthermore, since memory and processors are built basically of the same
“stuff”, there is no way to reverse this trend.

5

Caches

The memory bandwidth bottleneck may be alleviated by the use of caches.

Caches exploit temporal locality of memory access requests. Memory latency
is also somewhat obscured by exploiting spatial locality as well: when a word
is requested, adjacent words, constituting a cache line , are fetched as well.

P C M

6

Concurrency
Within the raw physical limitations on processor and memory, there are algorithmic and archi-
tectural ways to speed up computation. Most involve doing more than one thing at once.

• Overlap separate computations and/or memory operations.

– Pipelining.

– Multiple functional units.

– Overlap computation with memory operations.

– Re-use already fetched information: caching .

– Memory pipelining.

• Multiple computers sharing data.

The search for concurrency becomes a major element in the design of algorithms (and libraries,
and compilers). Concurrency can be sought at different grain sizes.

7

Vector computing

Cray: if the same operation is independently performed on many different
operands, schedule the operands to stream through the processing unit at a
rate r = 1 per CP. Thus was born vector processing .

do i = 1,n

a(i) = b(i) + c(i)

enddo
?

s

-

n

tloop = s+ rn

8

Vector computing: parallelism by pipelining

So long as the computations for each instance of the loop can be concurrently
scheduled, the work within the loop can be made as complicated as one wishes.

The magic of vector computing is that for s ≫ rn, tloop ≈ s for any length n!

Of course in practice s depends on n if we consider the cost of fetching n

operands from memory and loading the vector registers.

Vector machines tend to be expensive since they must use the fastest memory
technology available to use the full potential of vector pipelining.

9

Task parallelism

Real codes in general cannot be recast as a single loop of n concurrent se-
quences of arithmetic operations. There is lots of other stuff to be done (memory
management, I/O, etc.) Since sustained memory bandwidth requirements over
an entire code are somewhat lower, we can let multiple processors share the
bandwidth, and seek concurrency at a coarser grain size.

!$OMP DO PRIVATE(j)

do j = 1,n

call ocean(j)

call atmos(j)

end do

Since the language standards do not specify parallel constructs, they are in-
serted through compiler directives. Historically, this began with Cray microtask-
ing directives. More recently, community standards for directives (!$OMP, see
http://www.openmp.org) have emerged.

10

Instruction-level parallelism

This is also based on the pipelining idea, but instead of performing the same op-
eration on a vector of operands, we perform different operations simultaneously
on different data streams.

a = b + c

d = e * f

The onus is on the compiler to detect ILP. Moreover, algorithms may not lend
themselves to functional parallelism.

11

Amdahl’s Law

Even a well-parallelized code will have some serial work, such as initialization,
I/O operations, etc. The time to execute a parallel code on P processors is given
by

t1 = ts + t‖ (1)

tP = ts +
t‖
P

(2)

t1
tP

=
1

s+
1− s

P

(3)

where s ≡ ts
t1

is the serial fraction.

Speedup of a 1% serial code is at most 100.

12

Load-balancing

If the computational cost per instance of a parallel region unequal, the loop as a
whole executes at the speed of the slowest instance (implicit synchronization at
the end of a parallel region).

Work must be partitioned in a way that keeps the load on each parallel leg
roughly equal.

If there is sufficient granularity (several instances of a parallel loop per pro-
cessor), this can be automatically accomplished by implementing a global task
queue.

!$OMP DO PRIVATE(j)

do j = 1,n

call ocean(j)

end do

13

Scalability

Scalability : the number of processors you can usefully add to a parallel system.
It is also used to describe something like the degree of coarse-grained concur-
rency in a code or an algorithm, but this use is somewhat suspect, as this is
almost always a function of problem size.

Weak scalability Code is scalable by increasing problem size.

Strong scalability Scalable at any problem size.

14

A general communication and synchronization

model for parallel systems

We use the simplest possible computation to compare shared and distributed
memory models. Consider the following example:

real :: a, b=0, c=0
b = 1
c = 2
a = b + c
b = 3 (4)

at the end of which both a and b must have the value 3.

15

Sequential and parallel processing

M

R

P

b=1
c=2

a=b+c
b=3

M

R

P0

R

P1

b=1 c=2
a=b+cb=3

Let us now suppose that the computations of b and c are expensive, and have no mutual de-
pendencies.

Then we can perform the operations concurrently:

• Two PEs able to access the same memory can compute b and c independently, as shown
on the right.

• Memory traffic is increased: to transfer b via memory, and to control the contents of cache.

• Signals needed when b=1 is complete, and when a=b+c is complete: otherwise we have
a race condition.

16

Race conditions

a

b=a c=a

a

b=a a=c

a

a=b a=c

Race conditions occur when one of two concurrent execution streams attempts to write to a
memory location when another one is accessing it with either a read or a write: it is not an error
for two PEs to read the same memory location simultaneously. The second and third case result
in a race condition and unpredictable results. The third case may be OK for certain reduction or
search operations, defined within a critical region.

The central issue in parallel processing is the avoidance of such a race condition with the
least amount of time spent waiting for a signal: when two concurrent execution streams have
a mutual dependency (the value of a), how does one stream know when a value it is using is in
fact the one it needs? Several approaches have been taken.

17

Shared memory and message passing
The computations b=1 and c=2 are concurrent, and their order in time cannot be predicted.

(a)

P0 P1

b=1 c=2

a=b+c

b=3

-
lock(b)

�
lock(b)

(b)

P0 P1

b=1 c=2

a=b+c

b=3

-
send(b)
�

recv(b)

• In shared-memory processing, mutex locks are used to ensure that b=1 is complete be-
fore P1 computes a=b+c, and that this step is complete before P0 further updates b.

• In message-passing, each PE retains an independent copy of b, which is exchanged in
paired send/receive calls. After the transmission, P0 is free to update b.

18

Remote memory access (RMA)

(a)

P0 P1

b=1 c=2

a=b+c

b=3

�
start(b)

-
put(b)

�
wait(b)

(b)

P0 P1

b=1 c=2

a=b+c

b=3

-
get(b)

-post(b)
�

complete(b)

The name one-sided message passing is often applied to RMA but this is a misleading term.
Instead of paired send/receive calls, we now have transmission events on one side (put, get)
paired with exposure events (start,wait) and (post,complete), respectively, in MPI-2 ter-
minology, on the other side. It is thus still “two-sided”. A variable exposed for a remote get may
not be written to by the PE that owns it; and a variable exposed for a remote put may not be
read.

Note that P1 begins its exposure to receive b even before executing c=2. This is a key optimiza-
tion in parallel processing, overlapping computation with communication.

19

Non-blocking communication

Network

��
��
M

�

��
C

P

��
��
M

�

��
C

P

Network

��
��
M

�

��
C

P

��
��
M

�

��
C

P

• On tightly-coupled systems, independent network controllers can control data flow be-
tween disjoint memories, without involving the processors on which computation takes
place. True non-blocking communication is possible on such systems.

• Note that caches induce complications.

• On loosely-coupled systems, this is implemented as the semantically equivalent de-
ferred communication, where a communication event is registered and queued, but only
executed when the matching block is issued.

20

Memory models

Shared memory signal parallel and critical regions, private and shared vari-
ables. Canonical architecture: UMA, limited scalability.

Distributed memory domain decomposition, local caches of remote data (“ha-
los”), copy data to/from remote memory (“message passing”). Canonical
architecture: NUMA, scalable at cost of code complexity.

Distributed shared memory or ccNUMA message-passing, shared memory or
remote memory access (RMA) semantics. Processor-to-memory distance
varies across address space, must be taken into account in coding for per-
formance. Canonical architecture: cluster of SMPs. Scalable at large cost
in code complexity.

21

A 2D example

(1,1)

(nx,ny)

(is,js)

(ie,je)

Consider a platform consisting of 16 PEs consisting of 4 mNodes of 4 PEs each. We also
assume that the the entire 16-PE platform is a DSM or ccNUMA aNode . We can then illustrate
3 ways to implement a DistributedArray. One process is scheduled on each PE.

22

Distributed memory

M

P P P P

M

P P P P

M

P P P P

M

P P P P

• each domain allocated as a separate array with halo, even within the same mNode.

• Performance issues: the message-passing call stack underlying MPI or another library may
actually serialize when applied within an mNode.

23

Hybrid memory model

M

P P P P

M

P P P P

M

P P P P

M

P P P P

• shared across an mNode, distributed among mNodes.

• fewer and larger messages than distributed memory (communication/computation scales
as surface/volume), may be less latency-bound.

24

Pure shared memory

M

P P P P

M

P P P P

M

P P P P

M

P P P P

Array is local to one mNode: other mNodes requires remote loads and stores. OK on plat-
forms that are well-balanced in bandwidth and latency for local and remote accesses. ccNUMA
ensures cache coherence across the aNode.

25

Intelligent memory allocation on DSM

M

P P P P

M

P P P P

M

P P P P

M

P P P P

Better memory locality: allocate each block of 4 domains on a separate page, and assign pages
to different mNodes, based on processor-memory affinity.

26

Remote memory access with barriers
• Every PE has a unique ID, me.

• All PEs must arrive at a barrier before any PE can move on. The order in which they arrive
is not predictable.

program test
integer :: me, right
me = my_pe()
call BARRIER()
call GET(right, me, 1, mod(me+1,npes))
call BARRIER()
print *, ’PE’, me, ’ says hi to its neighbour on the right,’, right
end

PE 2 says hi to its neighbour on the right, 3
PE 0 says hi to its neighbour on the right, 1
PE 3 says hi to its neighbour on the right, 0
PE 1 says hi to its neighbour on the right, 2

27

RMA synchronization
get() synchronization:

b = ...
call BARRIER()
call GET(a, b, 1, remote_PE)
(useful work not dependent on a)
call BARRIER()
... = a

put() synchronization:

b = a
call PUT(a, b, 1, remote_PE)
(useful work not dependent on a)
call BARRIER()
a = ...

• put() and get() are non-blocking: return control to the sender after initiating commu-
nication.

• barrier() is a blocking operation.

28

Communication and synchronization

RMA is conceived with a tightly-coupled MPP in mind, where memory is close to
the network. This permits the PE wishing to get() or put() data to a remote
PE to proceed without interrupting the remote PE (if the hardware permits).

This requires a synchronization operation to make sure the transmitted data is
available for the operation. Synchronization is effected with a barrier() call.
On loosely-coupled systems barriers can be very expensive.

29

Distributed shared memory

More recently, with the advent of fast hardware cache-coherency techniques,
the single-address-space programming model has been revived within the cc-
NUMA architectural model. Here memory is physically distributed, but log-
ically shared. Since it still involves remote memory access (though perhaps
hidden from the user), distributed memory is still a correct lens through which to
view its performance.

b = ...

(useful work not dependent on a)

call BARRIER()

a = b

call BARRIER()

... = a

30

MPI: a communication model for loosely-coupled

systems

Loosely-coupled systems built out of commodity components now dominate the
scene.

For a loosely-coupled or heterogeneous system, direct operations to a remote
memory cannot be permitted.

The communication model is a rendezvous .

call GET(b, a, 1, from_pe) !on to_pe

becomes

call MPI_SEND(a, ..., to_pe, ...) !on from_pe
call MPI_RECV(b, ..., from_pe, ...) !on to_pe

There is now another level of latency – software latency – in negotiating the
communication.

31

Evolution of MPI

MPI was originally developed in an era when “the network is the computer” was
the prevailing ideology.

Many algorithms and problems are not loosely coupled, however. And at the
high-end, on tightly-coupled hardware, the software overhead. of MPI became
apparent.

Later extensions (MPI-2) offered an implementation of RMA that could also run
on loosely-coupled systems, but could be implemented efficiently on the right
architecture, with overheads comparable to native libraries, such as SHMEM.

MPI-2 also provided a layer for expressing I/O from distributed data in succinct
ways. Implementations suffer from the same problems as parallel I/O in general
faces.

32

Review of parallel programming models

• What is a race condition?

• What is a tightly-coupled parallel system?

• What is a barrier?

• What is cache coherency?

33

The MPI API: instantiation
Basic instantiation includes starting and stopping parallel execution, and to have each process
uniquely identify itself and others.

#include <stdio.h>
#include <mpi.h>

int main(int argc, char **argv)
{
int rank, size;

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);

printf("I am PE %d of %d\n", rank, size);

MPI_Finalize();
}

mpirun -np 2 a.out

Each MPI call has a context called a communicator with a certain size, and each process has
a unique rank within it. To address a message to another PE, both are needed.

34

MPI: blocking send and receive

Blocked messages are the simplest mode of communication.

void *buf;

int count, dest, tag;

MPI_Datatype type;

MPI_Comm comm;

MPI_Status status;

MPI_Send(buf, count, type, pe, tag, comm);

MPI_Recv(buf, count, type, pe, tag, comm, status);

count words of type type are sent or received from pe within the context comm.
tag is a user-supplied identifier for the message.

type can be a basic type (MPI_INTEGER, MPI_FLOAT, ...) or a more complex
derived datatype for a complex message.

35

Problems with blocked communication: deadlock

• On PE 0:

MPI_Send(buf, count, type, 1, tag, comm);
MPI_Recv(buf, count, type, 1, tag, comm, &status);

• On PE 1:

MPI_Send(buf, count, type, 0, tag, comm);
MPI_Recv(buf, count, type, 0, tag, comm, &status);

The send() on PE 0 cannot complete until PE 1 calls recv(); and vice versa.
Reversing the order of send/recv on one of the PEs will work.

Under the covers, MPI is using internal buffers to cache messages. A blocked
comm pattern may work for some values of count, and then fail as count is
increased.

36

MPI: non-blocking send and receive
A solution is to make at least one of send/recv non-blocking. A non-blocking call returns
control to the caller after initiating communication. The status of the message buffer is undefined
until a corresponding wait() call is posted to check the status of the message.

• On PE 0:

MPI_Request request;
MPI_Isend(buf, count, type, 1, tag, comm, &request);
... // other work that does not modify or free buf
MPI_Wait(&request, &status);
if(status == MPI_OK)

buf = ...

• On PE 1:

MPI_Irecv(buf, count, type, 0, tag, comm, &request);
... // other work that does not require the contents of buf
MPI_Wait(&request, &status);
if(status == MPI_OK)

... = buf ...

MPI_Wait() is a blocking call. MPI_Test() can be used as an alternative to check if the
pending communication is complete, without blocking.

37

MPI API summary
The basic calls within MPI have been described:

• instantiation: init, finalize, comm_rank, comm_size, . . .

• communication: send, recv, isend, irecv, . . .

• RMA: start/put/complete, post/get/wait . . .

Other aspects of the API include:

• Creation of communicators and intracommunicators (MPI-2)

• Broadcast, gather, scatter

• Reduction operations (reduce, allreduce);

• etc.

The API is vast!

38

A programming model for MPPs

The model we will be looking at here consists of:

• Distributed, as opposed to shared, memory organization.

• Local, as opposed to global, address space.

• Non-uniform, as opposed to uniform, memory access.

• Domain decomposition, as opposed to functional decomposition.

39

Parallel programming model

A task is a sequential (or vector) program running on one processor using local
memory.

A parallel computation consists of two more tasks executing concurrently.

Execution does not depend on particular assignment of tasks to processors.
(More than one task may belong to a processor.)

Tasks requiring data from each other need to synchronize and exchange data as
required. (We do not consider embarrassingly parallel problems here, where
there is no need for synchronization and data exchange.)

40

Partitioning

Issues to consider in partitioning the problem into tasks:

• Data layout in memory.

• Cost of communication.

• Synchronization overhead.

• Load balance.

41

Communication model

A message consists of a block of data contiguously laid out in memory.

Communication consists of an non-blocking send() and a blocking recv() of
a message. In loosely-coupled systems, PEs need to negotiate the communica-
tion, thus both a send() and a recv() are required. In tightly-coupled systems
we can have a pure send() (put()) and a pure recv() (get()). The onus
is on the user to ensure synchronization.

42

Communication costs: latency and bandwidth.

tt = ts + Ltw (5)

ts can include software latency (cost of negotiating a two-sided transmission,
gathering non-contiguous data from memory into a single message).

Note that we have considered tt as being independent of inter-processor dis-
tance (generally well-verified).

43

Global reduction
Sum the value of a on all PEs, every PE to have a copy of the result. Simplest algorithm: gather
on PE 0, sum and broadcast.

program test
real :: a, sum
a = my_pe()
call BARRIER()
if(my_pe().EQ.0)then

sum = a
do n = 1,num_pes()-1

call GET(a, a, 1, n)
sum = sum + a

enddo
do n = 1,num_pes()-1

call PUT(sum, sum, 1, n)
enddo

endif
call BARRIER()
print *, ’sum=’, sum, ’ on PE’, my_pe()
end

This algorithm on p processors involves 2(p − 1) communications and p summations, all se-
quential.

44

Here’s another algorithm for doing the same thing: a binary tree. It executes in log2 p steps,
each step consisting of one communication and one summation.

1 2 3 4 5 6 7 8

Σ2
1 Σ2

1 Σ4
3 Σ4

3 Σ6
5 Σ6

5 Σ8
7 Σ8

7

Σ4
1 Σ4

1 Σ4
1 Σ4

1 Σ8
5 Σ8

5 Σ8
5 Σ8

5

Σ8
1 Σ8

1 Σ8
1 Σ8

1 Σ8
1 Σ8

1 Σ8
1 Σ8

1

45

There are two ways to perform each step:

if(mod(pe,2).EQ.0)then !execute on even-numbered PEs
call GET(a, sum, 1, pe+1)
sum = sum + a
call PUT(sum, sum, 1, pe+1)

endif

if(mod(pe,2).EQ.0)then !execute on even-numbered PEs
call GET(a, sum, 1, pe+1)
sum = sum + a

else !execute on odd-numbered PEs
call GET(a, sum, 1, pe-1)
sum = sum + a

endif

The second is faster, even though a redundant computation is performed.

46

do level = 0,lognpes-1 !level on tree
pedist = 2**level !distance to sum over
b(:) = a(:) !initialize b for each level of the tree
call barrier()
if(mod(pe,pedist*2).GE.pedist)then

call GET(b, c, size(b), pe-pedist, pe-pedist)
a(:) = b(:) + c(:)

else
call GET(b, c, size(b), pe+pedist, pe+pedist)
a(:) = b(:) + c(:)

endif
enddo
call barrier()

This algorithm performs the summation and distribution in log2 p steps.

47

In general it is better to avoid designating certain PEs for certain tasks. Not only
is a better work distribution likely to be available, it can be dangerous code:

if(pe.EQ.0)call barrier()

While this is not necessarily incorrect (you could have

if(pe.NE.0)call barrier()

further down in the code), it is easy to go wrong.

48

Domain decomposition

do j = 1,nj

do i = 1,ni

a(i,j) = ...

enddo

enddo

is replaced by

do j = js,je

do i = is,ie

a(i,j) = ...

enddo

enddo

(1,1)

(ni,nj)

(is,js)

(ie,je)

49

Computational and data domains

do j = js,je
do i = is.ie

a(i,j) = ... + a(i-1,j+1)
end do

end do

(1,1)

(ni,nj)

(is,js)

(ie,je)

The computational domain is the set of gridpoints that are computed on a domain. The data
domain is the set of gridpoints needs to be available on-processor to carry out the computation,
and includes a halo of a certain width.

50

Diffusion equation

∂u

∂t
−K

∂2u

∂x2
= 0 (6)

In discrete form:

un+1
i = uni +K

∆t

∆x2

(

uni+1 + uni−1 − 2uni

)

(7)

Assume P < N , and that P is an exact divisor of N .

51

Round-robin allocation

u1
- u2�

- u3�
- u4�

- u5�
- u6�

- u7�
- u8�

Assign each ui to a task. Assign each task by rotation to a different processor (round-robin
allocation).

real :: u(1:N)
do i = 1,N

if(my_pe().NE.pe(i))cycle
!pass left, send u(i) to task i-1, receive u(i+1) from task i+1

call PUT(u(i), u(i), 1, pe(i-1))
call GET(u(i+1), u(i+1), 1, pe(i+1))

!pass right, send u(i) to task i+1, receive u(i-1) from task i-1
call PUT(u(i), u(i), 1, pe(i+1))
call GET(u(i-1), u(i-1), 1, pe(i-1))
call BARRIER()
u(i) = u(i) + a*(u(i+1)+u(i-1)-2*u(i))

enddo

52

Block allocation

u1
- u2�

- u3�
- u4�

- u5�
- u6�

- u7�
- u8�

We could also choose to assign N/P adjacent tasks to the same PE (block allocation).

real :: u(l-1:r+1)
!pass left, send u(l) to task l-1, receive u(r+1) from task r+1

call PUT(u(l), u(l), 1, pe(l-1))
call GET(u(r+1), u(r+1), 1, pe(r+1))

!pass right, send u(r) to task r+1, receive u(l-1) from task l-1
call PUT(u(r), u(r), 1, pe(r+1))
call GET(u(l-1), u(l-1), 1, pe(l-1))
call BARRIER()
do i = l,r

u(i) = u(i) + a*(u(i+1)+u(i-1)-2*u(i))
enddo

Communication is vastly reduced.

53

Overlapping communication and computation.

!pass left, send u(l) to task l-1, receive u(r+1) from task r+1

call PUT(u(l), u(l), 1, pe(l-1))

call GET(u(r+1), u(r+1), 1, pe(r+1))

!pass right, send u(r) to task r+1, receive u(l-1) from task l-1

call PUT(u(r), u(r), 1, pe(r+1))

call GET(u(l-1), u(l-1), 1, pe(l-1))

do i = l+1,r-1

u(i) = u(i) + a*(u(i+1)+u(i-1)-2*u(i))

enddo

call BARRIER()

u(l) = u(l) + a*(u(l+1)+u(l-1)-2*u(l))

u(r) = u(r) + a*(u(r+1)+u(r-1)-2*u(r))

The effective communication cost must be measured from the end of the do
loop.

54

Domain decomposition in 2D

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

There are different ways to partition N ×N points onto P processors.

55

1D or 2D decomposition?

Assume a problem size N ×N ×K, with a halo width of 1.

Cost per timestep with no decomposition:

t0 = N2Ktc (8)

56

Cost per timestep with 1D decomposition (N × N
P ×K):

t1D =
N2K

P
tc +2ts +4NKtw (9)

Cost per timestep with 2D decomposition (N√
P

× N√
P

×K):

t2D =
N2K

P
tc +4ts +

8NK√
P

tw (10)

In the limit of asymptotic N,P (maintaining constant N2/P), t2D ≪ t1D. The
case for 2D decomposition is the argument that the communication to computa-
tion ratio is like a surface to volume ratio, which goes as 1/r.

57

Elliptic equations

Consider a 2D Poisson equation:

∇2u(x, y) = f(x, y) (11)

The solution at any point to a boundary value problem in general depends on
all other points, therefore incurring a high communication cost on distributed
systems.

58

Jacobi iteration

u
(n+1)
ij =

1

4

(

u
(n)
i−1,j + u

(n)
i+1,j + u

(n)
i,j−1 + u

(n)
i,j+1 −∆x2fij

)

(12)

Iterate until |u(n+1)
ij − u

(n)
ij | < ǫ.

This method converges under known conditions, but convergence is slow.

59

Gauss-Seidel iteration

Update values on RHS as they become available:

u
(n+1)
ij =

1

4

(

u
(n+1)
i−1,j + u

(n)
i+1,j + u

(n+1)
i,j−1 + u

(n)
i,j+1 −∆x2fij

)

(13)

Iterate until |u(n+1)
ij − u

(n)
ij | < ǫ.

This method converges faster, but contains data dependencies that inhibit par-
allelization.

60

!receive halo from south and west
call recv(...)
call recv(...)

!do computation
do j = js,je

do i = is,ie
u(i,j) = u(i-1,j)+u(i,j-1)+u(i+1,j)+u(i,j+1)-a*f(i,j)

enddo
enddo

!pass halo to north and east
call send(...)
call send(...)

1 2
2
3

3
3

4
4

4
4

5

5
5 6
6 7

61

Red-Black Gauss-Seidel method
do parity = red,black

if(parity.NE.my_parity(pe))cycle
!receive halo from south and west

call recv(...)
call recv(...)

!do red domains on odd passes, black domains on even passes
do j = js,je

do i = is,ie
u(i,j) = u(i-1,j)+u(i,j-1)+u(i+1,j)+u(i,j+1)-a*f(i,j)

enddo
enddo

!pass halo to north and east
call send(...)
call send(...)

enddo

1 2
2
1

1
1

2
2

2
2

1

1
1 2
2 1

62

More sophisticated methods of hastening the convergence are generally hard
to parallelize. The conjugate gradient method accelerates this by computing at
each step the optimal vector in phase space along which to converge. Unfortu-
nately, computing the direction involves a global reduction.

In summary, if there are alternatives to solving an elliptic equation over dis-
tributed data, they should be given very serious consideration.

63

Review

• Concurrency and its limitations: Amdahl’s law, load imbalance.

• Memory models: shared, distributed, distributed shared.

• Communication primitives: RMA, blocking vs. non-blocking.

• Synchronization: global vs. point-to-point.

• Pitfalls: deadlocks and hangs, race conditions, implicit serialization.

• Algorithms: reducing remote data dependencies.

• Current research: high-level programming models that hide the underlying
memory model and configure themselves to the architecture.

64

