

RMIP:

<u>Regional climate Model Intercomparison Project</u>

S. Wang, D. Lee, J. McGregor, W. Gutowski , K. Dairaku, X. Gao, S. Hong, Y. Wang, K. Kurihara, J. Katzfey

- Background introduction
- Current climate simulation
- Asian regional climate projection
- Summary

Climate is changing

Why RCMs?

KEINUS

- The regional characteristics of climate change
- Requirement of regional/local adaptation & mitigation
- Limits of GCMs in regional climate change studies
- Added value of RCMs

History of Regional Collaboration

- universities, research institutes, government sponsored research agencies;
- scientists working on modelling, observation, and end users

Multi-RCM Ensemble System for Asian Climate

Simulation of the extreme heat in summer of 1997

Daily grid number with T_{max} above 35°C in the north of 35 N, July,1997

Daily grid number with T_{max} above 38°C in the south of 35 N, July,1997

Taylor Diagram for T, P and SLP

Activities for RMIP III

- Projecting high resolution regional climate change for 2040-2070 for Asia by using the ensemble of nice regional climate models;
- Based on the RCM simulations, detecting and assessing the sources and magnitudes of uncertainty in Asian climate change projection;
- Calculating the change and variance of controlling climate factors of Asian climate, i.e., Asian monsoon system, and its impacts on Asian climate;
- Exploring and developing new methods and techniques for treating ensembles of regional climate model outputs.

Domain, Time slices and Sub-regions

Data Availability

- Model Evaluation
- Climate Projection
 - Mean climate
 - Extremes
 - Heat wave
 - Heavy Precipitation
 - Probability estimates and uncertainty analysis
 - the arithmetic mean, the weighted mean, multivariate linear regression, and singular value decomposition
 - REA, Bayesian...

Surface climate biases in different sub-regions

- Colder than observation;
- Better performance than ECHAM5 over most sub-regions;

Surface Air Temperature Changes (°C)

ANNUAL	JJA	DJF
1.96	1.92	2.07
2.54	2.39	2.86
1.70	1.72	1.73
	ANNUAL 1.96 2.54 1.70	ANNUALJJA1.961.922.542.391.701.72

ANNUAL

Temperature changes in different sub-regions

	ECHAM5	ENSEM.	Uncertainty Range (RMS diff. each model)	IV intermodel variations
Arid/semi arid	4.10	3.38	2.20~4.03	0.66
North China	4.02	3.28	2.03~4.06	0.75
Center China	3.15	2.81	1.72~3.92	0.81

Uncertainty in Temperature Projection

Total Precipitation Changes (mm/day)

	ANNUAL	ALL	DJF
Asia	0.13 (2.46%)	0.15 (2.40%)	0.16 (3.14%)
Land	0.12 (5.23%)	0.20 (4.83%)	1.53 (1.69%)
Ocean	0.13 (2.78%)	0.24 (3.21%)	9.97 (2.69%)

ANNUAL

Precipitation changes in different sub-regions

1, Asia
2, Korea/Japan
3, Arid/Semi arid
area
4, North China
5, Center China
6, South China
7, Tibet
8, Southeast Asia
9, India
0, North Maritime
1, South Maritime
L2, Land
L3, Ocean

	ECHAM5	ENSEM.	Uncertainty Range	IV
Arid/semi arid	-0.16	0.06	-0.05~0.34	0.13
North China	-0.27	0.06	-0.18~0.54	0.22
Center China	0.69	0.25	-0.34~0.82	0.40
South China	0.66	-0.14	-0.48~0.27	0.24

Interannual variability for future climate by multi-RCMs

22

2041

2045

2049

2053

2057

ENSEMBLE

2061

2065 2069

Land Land Land 12 10 8 6 2041 2045 2049 2053 2057 2061 2065 2069 ENSEMBLE

	Ensemble
Korea/Japan	0.44
Arid/Semi arid area	0.63
North China	0.61
Center China	0.58
South China	0.50
Tibet	0.76
Southeast Asia	0.54
India	0.52
North Maritime	0.51
South Maritime	0.48

Summary

- RCMs show better performance than driving GCM over certain sub-regions
- For future climate, temperature will increase by up to 3C and show more warming in DJF and higher latitude;
- Asian precipitation will increase by 2.4%; most increase occurs over land in summer Season;
- Comparing to driving GCM, RCMs tend to have colder and drier future climate;

Current RMIP

- Data sharing
 - Data policy
 - Data server accessed through sftp
 - Project website under construction
- Publication
 - General paper
 - Scientific papers

Current RMIP

- Application
 - Development of an integrated climate change impact assessment tool for urban policy makers (UrbanCLIM) led by Yinpeng Li
 - Development of high resolution climate change projections.
 - Development of an integrated impact assessment system

Development of an integrated climate change impact assessment tool for urban policy makers (UrbanCLIM)

The main feature of the tool will be:

- Modular design to build on and link to existing models and related applications;
- Integrated analysis enabling testing of adaptation and mitigation options against socio-economic drivers, likely sectoral impacts, and existing goals for sustainable development;
- An open framework, allowing for multi-scale, multi-disciplinary impact assessment, which can be customized case-by-case to each city; Therefore this tool is potentially can be applied the wide area of APN community.
- Climate change uncertainty analysis building on GCM and RCM climate change scenarios;
- GIS integration, which is not heavily reliant on third party software;
- Visualization and further analysis options for the assessment results.

Future RMIP

- Application: urban or dryland
- Evolving into new projects
 - High resolution studies focussing on heavy precipitation: model performance, mechanisms and factors that control the change in extreme precipitation
 - High resolution simulations over urban areas

Future RMIP and CORDEX

- RMIP group members already involved with CORDEX East Asia activities;
- Collaboration between the East and South Asian groups with the support of APN and WCRP.

THANK YOU

Uncertainty in Precipitation Projection

