

Reliable Precipitation Measurements for Validation of Regional Climate Simulations

Toru Terao (Kagawa Univ.)

Kiguchi and Oki (2010)

Bangladesh Floods

Devastating monsoon floods occur frequently in Bangladesh

Figure 4.7 Extent of flood-affected areas in Bangladesh, 1954–2004. Sources: BWDB (1991a, 1998a, n.d.[a]). Hofer and Messerli, 2006

Floods and Rice Production

- After severe floods, rice production increases
- Fertilization of Soil over Bangladesh

Northeastern India Project

The largest amount of rainfall in the world in the Northeastern region of Indian Subcontinent.

- This rainfall benefits people as water resources for agricultural product, drinking water, etc.
- However, the excess rainfall sometimes causes disaster, like serious flood.

The History of Our field research

- I 987 Flood(JSPS)
- I 991 "Killer"Cyclone(JSPS)
- I992-1994 Flood(JICA)
- I 996 Tornado in Tangail (private)
- I995-1997 Flood and Cyclone(JSPS)
- I 999-2001 Flood(JSPS)
- 2000-2002 Flood(JICA)
- 2000-2002 Summer Monsoon(JSPS)
- 2002-2007 Infectious Diseases(KAGI2I, DPRI)
- 2005-2007 Heavy rainfall monitoring(JEPP,GEOSS)
- 2006-2008 Brahmaputra River and Rural development (JSPS)
- 2006-2008 Infectious diseases(JSPS)
- 2007 Cyclone "Sidr" (JSPS)
- 2006-2015 MAHASRI Project
- > 2014-2018 Data Rescue (JSPS)
- 2016-2018 TRMM Validation by Raingauge Network (JAXA)

Time scales of disturbances

- Characteristic Time Scales
 - Climate Change
 - Interannual variation
 - Seasonal variation
 - Intraseasonal variation
 - Diurnal variation
- Phenomena
 - Monsoon River Floods, Active/Break Cycle
 - Premonsoon: Tornado, Nor-wester
 - Cyclone

Observation Network

RN INDIA, BHUTAN AND BANGLADESH 80 AWS: from 2006 India 1000 3281 5710 1520 Scale 1 4 250 000 Mainhind Misshai Ch Cox's Bazz Mart Continuation (n aeris prete BOUNDARIES Bangladesh Raingauge: from 2004

Enterhangh Geographical Internation

Spatial Distribution of Annual Rainfall

Ratio of rainfall rank

Regional differences upon the seasonal transition of mean-pentad precipitation

Why the regional differences appear in NE part ofFukushima (2017)Indian subcontinent?11

Rainfall estimation

- IMD Gridded Rainfall (0.25deg x 0.25deg), 1901-
- Based on raingauge observations

Accuracy of rainfall gridded data

- Averaged number of observation in each grid
- Data is created by interpolation and extrapolation

d4pdf

Output of the Earth Simulator

Annual rain in d4pdf climatic model

- Local maximum of annual rain at Meghalaya, but weak
- Resolution is too low (60km)

Topography in d4pdf model

- Real height of Meghalaya Plateau: 2,000 m
- Height in d4pdf model: below 500 m

Annual rainfall variation in d4pdf

We checked annual variations at selected points

d4pdf Climatology

- Climatological Annual Variation of Daily Rainfall
 - Cherrapunjee, Dhaka, Himalaya, W-Ghats

How TRMM/PR is reliable?

- TRMM/GPM observation is highly useful and reliable in many areas
- We validated TRMM/PR estimation using our raingauge network covering NE Indian subcontinent
- We detected severe underestimation of rainfall in Meghalaya and Sylhet area.

We Published Results in SOLA

Validation of TRMM/PR by R-G Network in NE India

SOLA, 2017, Vol. 13, 157-162, doi:10.2151/sola.2017-029

157

Direct Validation of TRMM/PR Near Surface Rain over the Northeastern Indian Subcontinent Using a Tipping Bucket Raingauge Network

Toru Terao¹, Fumie Murata², Yusuke Yamane³, Masashi Kiguchi⁴, Azusa Fukushima⁵, Masahiro Tanoue⁴, Shamsuddin Ahmed⁶, Sayeed Ahmed Choudhury⁶, Hiambok Jones Syiemlieh⁷, Laitpharlang Cajee⁷, Abani Kumar Bhagabati⁸, Prasanta Bhattacharya⁸, Subashisa Dutta⁹, Rahul Mahanta¹⁰, and Taiichi Hayashi¹¹
¹Faculty of Education, Kagawa University, Takamatsu, Kagawa, Japan
²Faculty of Science and Technology, Kochi University, Kochi, Japan
³Faculty of Education, Tokoha University, Shizuoka, Japan
⁴Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
⁵Faculty of Humanity, Kobe Gakuin University, Kobe, Japan
⁶Bangladesh Meteorological Department, Dhaka, Bangladesh
⁷Department of Geography, North Eastern Hill University, Guwahati, Assam, India
⁸Department of Civil Engineering, Indian Institute of Technology Guwahati, Assam, India
¹⁰Department of Physics, Cotton University, Guwahati, Assam, India
¹¹Center for Southeast Asian Studies, Kyoto University, Kyoto, Japan

TRMM-2A25(V7) dataset

TRMM

- Sun async., 36N-36S, 402.5km
- TRMM-PR
 - Precipitation Radar
 - Swath: 247km
 - Resolution: 5km
 - vertical 250m(0-20km)
- TRMM 2A25(V7)
 - ▶ Renovation of algorithms for vertical rain profile (V6→V7)
 - rain, surface_rain were utilized.

Review: TRMM/RG comparison

- Seto et al. (2013)
 - JMA I-minute, I0-minute
 - TRMM 2A25 near surface rain

Radar observation and limitation

- Radar reflectivity (z) and rainfall estimation (R)
 - R is not a function only of z. Dependency of R on z (z-R relationship) changes due to many factors associated with drop size distribution and some other.
 - For examples, drop size distribution changes regarding the cloud type (stratified, convective, cold, warm, ...), seasons, and geographical regions.
 - We should change the z-R relationship for different cloud type, season, and locations, determining the drop size distribution in each case. However, in many cases, we can not determine DSD only from observable parameters.
 - Other information on DSD have to be given by different empirical studies.
 - Errors can be detected from the comparison with raingauges.

However, ...

Temporal Resolution of Raingauge

- Temporal resolution of tipping bucket raingauge (0.5 mm bucket size) rainfall estimation corresponds with the tipping interval. That is, it depends on averaged rainfall intensity of a time scale of tipping interval.
 - Tipping interval:
 - For I mm/hr -> 30 minutes
 - For 3 mm/hr -> 10 minutes
 - For 6 mm/hr -> 5 minutes
 - For 30 mm/hr -> I minute
 - For 60 mm/hr -> 30 seconds
 - For 180 mm/hr -> 10 seconds

Space-time diagram of raingauge and radar observation

Space-time diagram of raingauge and radar observation

Space-time diagram of raingauge and radar observation

Hypothesis to be rejected

- Definition:
 - Rt:TRMM observation of rainfall
 - Rg: matchup raingauge observation estimated by tipping occurrence frequency for specific time window 2\Delta t (we used 5 minutes (300 seconds) in this paper)
- ▶ We evaluate the difference, *d*=Rt-Rg, for matchups.
 - all matchups / matchups for specific areas / matchups for specific ranges of Rt values, or other criteria
- Confidence interval of d should include {0}.
- Otherwise, we conclude that Rt overestimates or underestimates real rainfall intensity.

Confidence interval of Rt-Rg

- Percentile method of bootstrap test (Efron 1979) was utilized in the present study
 - Start from samples {di|i=1, 2, ..., n}, Ave({di}).
 - We make B resamples {dj|j=ab1, ab2, ..., abn}b (b=1, 2, ..., B)
 - abi is determined by sampling with replacements.
 - ▶ Here we calculated Ave({dj})b for B=10,000.
 - An interval defined by 2.5 and 97.5 percentiles of calculated Ave({dj})b is defined as the 95% confidence interval. That by 0.5 and 99.5 percentiles is 99% confidence interval.

RG network in NE Indian subcontinent

- We conducted direct ^a TRMM validation using 37 raingauges.
- They are Installed from⁶
 2004 and continued up to now.
- We obtained 29,172 matchups including 2,245 rainy cases.

Data Availability of Raingauges

station	location	observation period	$\mathrm{matchups}$	number of		
	°E/°N	from-to	rainy/all	$data \ gaps$		
Assam Brahmaputra						
Moridhal	$27.53^{\circ}N/94.60^{\circ}E$	7 Jul 2006-1 Mar 2012	105/1044	2		
Tinskia	$27.50^{\circ}N/95.36^{\circ}E$	19 Feb 2007-5 Jun 2011	55/633	2		
Sankardev	27.08°N/93.84°E	9 Jul 2006-1 Mar 2012	85/1083	1		
Teok	26.84°N/94.46°E	3 Mar 2008-17 Feb 2011	38/551	1		
Tezpur	26.70°N/92.84°E	26 May 2006-4 May 2011	60/766	4		
Nalbari	26.44°N/91.44°E	20 Jul 2006-5 Mar 2012	47/797	3		
Kokrajhar	26.40°N/90.28°E	5 Mar 2008-5 Mar 2012	33/536	2		
Nagaon	26.36°N/92.69°E	27 May 2006-29 Feb 2012	47/699	2		
Goalpara	26.16°N/90.63°E	25 Jun 2006-4 Mar 2012	58/836	2		
Guwahati	26.15°N/91.66°E	17 Mar 200610 Feb 2013	63/1257	1		
Diphu	25.84°N/93.42°E	30 Jun 2006-23 Feb 2010	15/366	2		
Lumding	25.75°N/93.18°E	1 Jul 2006-4 Mar 2012	32/657	2		

station	location	observation period	matchups	number of	
	°E/°N	from-to	$\operatorname{rainy}/\operatorname{all}$	$data \ gaps$	
Meghalaya					
Pynursla	$25.31^{\circ}N/91.90^{\circ}E$	15 Jun 2006-4 Jun 2012	97/960	1	
Amlarem	$25.29^{\circ}N/92.12^{\circ}E$	$11 { m Apr} 2006-7 { m Aug} 2008$	49/399	1	
Mawsynram	$25.29^{\circ}N/91.58^{\circ}E$	23 May 2006-11 Oct 2012	119/1030	1	
Cherrapunjee	$25.27^{\circ}N/91.72^{\circ}E$	18 Apr 2006-7 Nov 2012	108/793	5	
Thangkharang	$25.21^{\circ}N/91.72^{\circ}E$	15 Nov 2006-8 Mar 2012	82/749	2	
Nongtalang	$25.21^{\circ}N/92.07^{\circ}E$	29 May 2009-16 Mar 2011	37/301	0	

station	location	observation period	$\mathrm{matchups}$	number of
	°E/°N	from-to	rainy/all	$data \ gaps$
		Sylhet- $Barak$		
Jaflong	$25.18^{\circ}N/92.02^{\circ}E$	6 Mar 2007-9 Mar 2012	88/757	1
Haflong	25.17°N/93.02°E	7 Aug 2006-5 Sep 2010	32/374	2
Bulaganj	25.14°N/91.75°E	11 May 2006-11 Mar 2012	99/972	1
Jaintiapur	$25.14^{\circ}N/92.13^{\circ}E$	9 May 2006-9 Mar 2012	107/899	1
Chhatak	25.04°N/91.67°E	10 Mar 2006-10 Mar 2012	92/1019	0
Sylhet Airport	24.96°N/91.87°E	9 Mar 2007-11 Mar 2012	62/825	1
Sylhet	24.91°N/91.88°E	11 May 2006-11 Mar 2012	80/812	2
Hailakandi	24.69°N/92.57°E	9 Aug 2006-30 Jun 2011	31/509	2
Juri	24.64°N/92.16°E	11 Mar 2006-8 Mar 2007	8/163	0
Kulaura	24.53°N/92.03°E	8 Mar 2007-18 Mar 2011	39/663	1
Rajnagar	24.52°N/91.85°E	10 May 200611 Mar 2012	67/971	0

station	location	observation period	matchups	number of
	°E/°N	from-to	rainy/all	data gaps
		Bengal Plain		
Dinajpur	$25.65^{\circ}N/88.65^{\circ}E$	1 Mar 2005-8 Mar 2012	47/1112	3
Mymensingh	24.73°N/90.43°E	2 Aug 2004-9 Mar 2012	62/1296	1
Habiganj	24.41°N/91.43°E	7 Mar 2007-10 Mar 2012	44/654	1
Rajshahi	24.36°N/88.65°E	11 Aug 2004-7 Mar 2012	52/1259	1
Srimangal	24.30°N/91.74°E	7 Mar 2007-6 Sep 2011	46/685	1
Dhaka	23.78°N/90.38°E	15 Aug 2004-19 Mar 2013	67/1415	1
Chittagong	22.35°N/91.81°E	4 Aug 2004-10 Mar 2012	79/1190	1

TRMM/RG validation method

- TRMM data
 - TRMM-2A25(V7) 1998-2013
 - Swath passes over RG almost once a day.
- Rainfall amount estimation
 - Cases when the FOV passed over the area within 3.5km radius are analyzed.

 $t_0 - \Delta t + \tau$

- RG tipping events within the $2\Delta t$ seconds ($\Delta t = 150$ s) centered by the scanning time t_0 are counted.
- Considering the rain drop descending time, a lag τ was applied for the estimation (Amitai et al. 2012).
- Rain intensity (mm/h) was estimated and compared.

CFB Height and Time Lag

- Time lag is expected between the TRMM/PR and raingauge observations.
- Rt and Rg must best match if we consider appropriate time lag of Rg behind Rt.
- We calculate the correlation coefficient between Rg and Rt with different lags.

Matching with lags

- Some become better, some become worse ...
- But it improved if we consider time lag Δt =300 sec

Detection of the Best Lag

We detected appropriate time lag of 300 seconds.

Full calculation -10hour – 10hour lag

Raingauge (R_g) and TRMM (R_t)

Rg-Rt Diagram for Premonsoon & Monsoon

- Premonsoon (Apr.-May): No significant difference
- Monsoon (Jun.-Sep.): Significant underestimation

Summary of results

Table 1. List of statistics for the matchups between TRMM/PR NSR and raingauge over four subregions for monsoon and premonsoon seasons. The bias ratio r and its 99% and 95% bootstrap confidence intervals, which were identified by 0.5, 2.5, 97.5 and 99.5 percentiles, were tabulated. Statistically significant bias ratios at 95% and 99% confidence levels were indicated by italic and bold faces, respectively.

subregion	0.5%	2.5%	average	97.5%	99.5%	bias ratio	
premonsoon							
Assam Brahmaputra	0.011	0.028	0.083	0.141	0.162	49.4 % ^a	
Meghalaya	-0.517	-0.381	-0.026	0.300	0.403	-2.9%	
Sylhet-Barak	-0.066	-0.032	0.068	0.163	0.198	24.2%	
Bengal Plain	-0.001	0.009	0.041	0.073	0.083	57.0% ^b	
all	-0.037	-0.014	0.051	0.111	0.127	17.66%	
monsoon							
Assam Brahmaputra	-0.159	-0.132	-0.059	0.011	0.033	-13.8%	
Meghalaya	-1.701	-1.584	-1.205	-0.844	-0.752	-51.3%	
Sylhet-Barak	-0.609	-0.543	-0.363	-0.202	-0.154	-35.2%	
Bengal Plain	-0.172	-0.132	-0.031	0.056	0.084	-8.1%	
all	-0.428	-0.398	-0.314	-0.236	-0.212	-35.7%	

^a not significant for D = 2.5 km case.

^b not significant for $\tau = 360$ seconds case.

Rg-Rt Diagram for Premonsoon & Monsoon

- Premonsoon (Apr.-May): No significant difference
- Monsoon (Jun.-Sep.): Significant underestimation

Locations and Season of Underestimate

• Larger negative bias ratio $(=(R_t-R_g)/R_g)$ were found over Meghalaya and Sylhet-Barak region in monsoon season

Underestimation of TRMM/PR

- Bias Ratio: Meghalaya: -51.3%, Sylhet-Barak: -35.2%
 - Significant at 99% Confidence Level
 - > 2-20 mm/h (TRMM/PR)
 - Weak rainfall (especially for Meghalaya)

Underestimation and Rainfall Type

- Meghalaya: Stratiform cloud, No rain detected cases
- Sylhet-Barak: Convective cloud

Disdrometer Observation Project

Disdrometers were installed on the Meghalaya Plateau

Observation started in this May

First Result of Disdrometer Observation

- Three visits to observatories
 - May 2017
 - Installation of Disdrometer and Raingauge
 - Aug. 2017
 - Data acquisition
 - Nov. 2017
 - Data acquisition
 - Decision to continue observation
- Planned visit
 - Mar. 2018
 - Data acquisition

Rain Intensity-Diameter (D_m) Diagram

- Heavy Rain Cases:
 - 8 Aug. (236 mm), 11 Aug. (237.5 mm), 14 Aug. (118 mm)
- Target for Comparison: 21 Oct 2017 (377.5 mm)

Rain Intensity-Diameter Diagram

- Heavy Rain Cases:
 - ▶ 8 Aug. (236 mm), 11 Aug. (237.5 mm), 14 Aug. (118 mm)
- Target for Comparison: 21 Oct 2017

Rain Intensity-Diameter Diagram

- Heavy Rain Cases:
 - ▶ 8 Aug. (236 mm), 11 Aug. (237.5 mm), 14 Aug. (118 mm)
- Target for Comparison: 21 Oct 2017

Rain Intensity-Diameter Diagram

- Heavy Rain Cases:
 - ▶ 8 Aug. (236 mm), 11 Aug. (237.5 mm), 14 Aug. (118 mm)
- Target for Comparison: 21 Oct 2017

New Raingauges to Find TRMM Peaks

- Estimation of Rainfall in the Southern Slope of the Meghalaya Plateau with TRMM 2A25 NSR
 - TRMM NSR: Underestimate ?
 - Where is the Center of the World Record Rainfall over Meghalaya?
 - Going down to Valleys??

Valleys and TRMM

 Deep Dissected Valleys in the Southern Side of Plateau

Summary

- Successfully directly validated the TRMM-2A25 NSR using tipping bucket raingauge network.
- TRMM-2A25 NSR underestimate monsoon rainfall over the Meghalaya Plateau and Sylhet-Barak regions.

Due to

- Misdetection of shallow rain cloud?
- Further Comparisons ... ?
 - We can expect additional information from further comparisons
 - Ambient Temperature/Humidity/Water Vapor Flux, Echo Top Height, TRMM Version 6 vs 7 …
 - Disdrometer may give us some other information
 - New Raingauges are installed in the valley

PostMAHASRI is now under planning

New GEWEX RHP covering Asian monsoon region

WCRP / GEWEX **GEWEX** within WCRP Strato. SPARC Ocean Cryosphere Land

WCRP Grand Challenges

- Melting Ice and Global Consequences
- Clouds, Circulation and Climate Sensitivity
- Carbon Feedbacks in the Climate System
- Weather and Climate Extremes
 - Are existing observations sufficient to underpin the assessment of extremes?
 - What are the relative roles of large-scale, regional and local scale processes, as well as their interactions, for the formation of extremes?
 - Are models able to reliably simulate extremes and their changes, and how can this be evaluated and improved?
 - What are the contributors to observed extreme events and to changes in the frequency and intensity of the observed extremes?
- Water for the Food Baskets of the World
- Regional Sea-Level Change and Coastal Impacts
- Near-term Climate Prediction

GEWEX Science Questions (2013)

- Observations and Predictions of Precipitation:
 - How can we better understand and predict precipitation variability and changes?
- Global Water Resource Systems:
 - How do changes in land surface and hydrology influence past and future changes in water availability and security?
- Changes in Extremes:
 - How does a warming world affect climate extremes, esp. droughts, floods, and heat waves, and how do land area processes, in particular, contribute?
- Water and Energy Cycles and Processes:
 - How can understanding of the effects and uncertainties of water and energy exchanges in the current and changing climate be improved and conveyed?

GEWEXのサブコンポーネント

GHP Structure

RHP Status

Active in 4 continents:

Europe: *HymEx* (2010-2020) =====> High-impact weather events, societal response *Baltic Earth* (2016-) ====> Sea and land changes, biogeochemical processes Australia: *OzyWex* (2015-) =====> Water and energy cycle in Australia Africa: *HyVic* (2015-2024) =====> Hydroclimatic variability over Lake Victoria basin North America: *CCRN* (2014-2018) => Cryospheric, ecological, hydrological interactions

Recently finished:

Asia: MAHASRI (2007-2016) =====> Asian Monsoon Eurasia: NEESPI (2004-2015) ====> Northern Eurasian climate-ecosystem-societal interac

Prospective:

Europe: PannEx (end 2017?) ====> Agronomy, air quality, sustainability & water mgnt

Pre-monsoon Dry Line over Bangladesh

Dr.Yamane is leading this research

PJ pattern, ENSO-Monsoon, IPOC

Indian-Pacific Ocean Combined feedback mode

▶ SST anom.⇒Easterly anom.⇒Reduction of WS⇒SST anomaly

-0.1

-0.02 0.02 0.1

SST anomalies [°C]

0.18

- How is land mass impact?
 - Is it only passive?

Boundary Layer⇒Tibetan High

Boos and Kuang (2010)

Mass: Boundary Layer->Tibetan High

Drafting Science Plan of Post-MAHASRI

- Internaional PostMAHASRI Workshop (15-16 Mar, Tokyo)
- Science Steering Group (SSG)
- GEWEX Conference
 - 6-11 May 2018 @Canmore/Canada
- JpGU session on 20 May 2018
- Submission of proposal of new RHP to WCRP SSG
 - Nov. 2018?

Thank you!

Research Proposal

- Estimation of Rainfall in the Southern Slope of the Meghalaya Plateau with TRMM 2A25 NSR
 - TRMM NSR: Underestimate ?
 - Where is the Center of the World Record Rainfall over Meghalaya?
 - Going down to Valleys??

Valleys and TRMM

 Deep Dissected Valleys in the Southern Side of Plateau

Comparison with Surface Radar System

まとめ

▶ TRMM 2A25 surface rainをNEインド雨量計網と比較

- 1938回の降水有り観測機会について、雨滴の落下によると思われる時間のずれを検出することができた
- 平均すると約300秒であり、一般的に1000~2000m上空の反 射強度をsurface rainの推定に用いていることと整合的
- TRMM 2A25に過小評価がみられた
 - 過小評価が見られるのはMeghalaya山脈及びその南麓の Sylhet域
 - ▶ 過小評価は特にJJASに顕著である
 - 過小評価が見られる地域・季節と、1000-2000mあるいは 2000-3000mの層での降水強度の増加が対応している
 - ▶ NEインド雨量計網(京大防災研)の活用が課題

雨量計のメンテナンスに協力をいただいているすべての 数え切れない関係者の皆さま方に感謝申し上げます。

TRMM-2A25(V7) dataset

TRMM

- Sun async., 36N-36S, 402.5km
- TRMM-PR
 - Precipitation Radar
 - Swath: 247km
 - Resolution: 5km
 - vertical 250m(0-20km)
- TRMM 2A25(V7)
 - ▶ Renovation of algorithms for vertical rain profile (V6→V7)
 - Rain, near surface_rain (NSR)

Location

Location

Raingauge Network in NE India

Thimphu • We have Sikkim Bhutan Dibrugh Darjeeling Sibsagar Siliguri Nagaland Gauhati Rangpur Meghalaya Balurghat Senapati Impha Manipur Bangladesh Tripura Dacca o Udaipur Mizoram aora 00 Barisal Kolkata Patuakhali

21 Feb. 2014・千葉大学 第16回環境リモートセンシングシンポジウム

インド亜大陸北東部の転倒ます型雨量計網による TRMM-2A25降水量気候値の検証

TRMMを用いたインド亜大陸北東部の 降水特性微細構造の解析

寺尾 徹(香川大学教育学部)・村田文絵・山根悠介 ・木口雅司・福島あずさ・林 泰一

インド亜大陸北東部の雨量計とTRMM-2A25(V7)の比較

- ▶ 展開した雨量計との比較結果
- 気候値の微細構造
 - surface_rain
 - ▶ rain(鉛直分布含む)
- 降水強度鉛直分布の特徴
 - ▶ 季節変化
 - 南北構造

How much is the world record?

26,461 mm @Cherrapunjee (August 1860 – July 1861)

9,360 mm @Cherrapunjee (July 1861)

Observation field at IMD, Cherrapunji(2006)

Annual rainfall (1901-2006)

Interannual variation of rainy days (1902-2005)

Rainfall duration vs. Maximum accumulated rainfall

: world record, : japan record

Kiguchi and Oki (2010)

TRMM-2A25(V7) dataset

TRMM

- ▶ 太陽非同期•36N-36S•402.5km
- TRMM-PR
 - ▶ 降雨レーダー
 - ▶ 観測幅約247km
 - ▶ 解像度約5km
 - ▶ 鉛直分解能250m(0-20km)
- TRMM-PR(V7)
 - ▶ 降水鉛直分布推定アルゴリズムの改良(V6→V7)
 - ト 各高度のrain, surface_rain利用

Premonsoon Climatology (TRMM-2A25) 1998-2011 Mar.-May

Monsoon Climatology (TRMM-2A25) 1998-2011 Jun.-Sep.

106

雨量計の位置でのTRMM気候値(6-9月)

- Cherrapunjee 3680mm
- Cherrapunjeeの東隣 6710mm

Vertical Section

Cherrapunjee RG vs. TRMM 2A25

RG-5min total vs.TRMM 0.1deg rect. average

Cherrapunjee RG vs. TRMM-2A25

RG-5min total vs.TRMM 0.1deg rect. average

雨量計降水評価時間(τ)と対TRMM相関・比 ▶ 過小評価は評価時間にはあまりよらない

降水強度の増加

▶ 高度が下がると降水が増加する

▶ $3000m \rightarrow 2000m$

まとめ

- Cherrapunjeeの雨量計とTRMM比較
 - ▶ 空間パターン
 - ▶ Meghalaya山脈の多量の降水が再現されている
 - ▶ 雨量計との関係
 - ▶ 観測機会ごとの比較から大きな過小評価(40%)
 - Cherrapunjeeのグリッドでは3680mm/4ヶ月(1998-2011)
 - ▶ 雨量計のあるグリッドの隣で降水量は6710mm/4ヶ月(1998-2011)
 - 降水強度の鉛直勾配が大きい・・・surface_rainの取扱い?
- 降水強度の鉛直断面
 - プレモンスーン期: 25.2-25.3N
 - ▶ ベンガル湾上の10000mあたりに4月に大きな降水強度
 - ▶ モンスーン期: 25.2-25.5N(広がる)

雨量計の位置でのTRMM気候値(6-9月)

- Cherrapunjee 3680mm
- Cherrapunjeeの東隣 6710mm

