High-resolution simulations of the South Asian monsoon under changing climate R. Krishnan Centre for Climate Change Research (CCCR) Indian Institute of Tropical Meteorology, Pune Collaborators: T.P. Sabin, R. Vellore, M. Mujumdar, J. Sanjay, B.N. Goswami J.-L. Dufresne, F. Hourdin, P. Terray; IITM-ESM Team Advanced School on Earth System Modeling IITM, Pune 18-27 July, 2016 Long-term climatology of total rainfall over India during (1 Jun - 30 Sep) summer monsoon season (http://www.tropmet.res.in) Interannual variability of the Indian Summer Monsoon Rainfall # Spatial map of linear trend of JJAS rainfall (1951 – 2007) **Increasing Trend of Extreme Rain Events over India in a Warming Environment** Goswami et al. 2006, Science #### **Time series of count over Central India** Interannual, Interdecadal and long-term trends of extreme rainfall events over Central India modulated by equatorial Indian Ocean SST variations –Rajeevan et al. 2008 (a) Temporal variation of frequency of very heavy rainfall events (R > 150 mm/day) over Central India (thin line) and its smoothed variation (thick line) during 1901-2004 (b) Smoothed variation of frequency of very heavy rainfall events over central India and SST anomalies over Equatorial Indian ocean - Rajeevan et al. 2008 GRL Anthropogenic forced changes in monsoon rainfall will remain difficult to detect against a backdrop of large natural variability – Sinha et al. Nature Comm. 2015 Reconstruction of Indian monsoon rainfall over the last two millenia using stable oxygen isotopes in speleothems from northern India over the last two millennia Figure 3 | Time series analysis of the NI and CI δ^{18} O records. (a) The NI speleothem record shown as δ^{18} O anomalies (relative to the mean of the time series). The δ^{18} O anomalies are shown both as raw data (grey) and smoothed (11-year running mean) (black) along with the regressed AISMR anomalies (%). (b) The comparison between the SSA⁴⁴ detrended NI (black) and CI¹⁴⁻¹⁶ (red) speleothem records shown as δ^{18} O anomalies (raw data). The long-term non-stationary trends in both time series are removed by subtracting the first reconstructed component indicated by SSA of the raw data. The two dashed horizontal lines delineate a 10% change in monsoon rainfall amounts, highlighting the magnitude of multi-decadal variability inferred from our NI δ^{18} O record. (c) Power spectrum of the composite NI and (d) CI SSA-detrended δ^{18} O time series obtained using REDFIT³¹ software. A varying number of Welch overlaps were used to optimize bias/variance properties. Spectral band significant above the 90% level are labelled with their period. # Deciphering the desiccation trend of the South Asian monsoon hydroclimate in a warming world R. Krishnan¹ · T. P. Sabin¹ · R. Vellore¹ · M. Mujumdar¹ · J. Sanjay¹ · B. N. Goswami^{1,2} · F. Hourdin³ · J.-L. Dufresne³ · P. Terray^{4,5} he onset of the monsoon in early June brings with it a burst of life across the region - children playing on the streets, blossoming flora, flowing rivers, and sowing of agricultural lands. The monsoon supplies ~80% of South Asia's annual rainfall, supporting the region's primarily rain-fed agriculture and recharging rivers, aquifers and reservoirs that provide water to over one-fifth of the global population. Since the 1950s, the monsoon has weakened¹ and become more erratic, with increased occurrence of extreme rainfall events2. This has led to crop failures and water shortages with severe socio-economic and humanitarian impacts across South Asia. Writing in Climate Dynamics, R. Krishnan and colleagues3 suggest that anthropogenic greenhouse gas (GHG) emissions, aerosol emissions and agricultural land-cover changes are responsible for the observed changes in rainfall patterns. They predict that the monsoon weakening will continue through the twenty-first century, threatening the livelihoods and resources of over 1.6 billion people in the region. news & views SOUTH ASIAN MONSOON ## Tug of war on rainfall changes Rainfall associated with the South Asian summer monsoon has decreased by approximately 7% since 1950, but the reasons for this are unclear. Now research suggests that changes in land-cover patterns and increased emissions from human activities have contributed to this weakening, which is expected to continue in the coming decades. ### Global climate **No zoom**: 1°x1° ; **Zoom**: same number of points, with resolution ≈35 km over west Asia ### South Asia CORDEX domain ### Climatological results Rainfall and surface temperature over the Indian landmass JJAS mean rainfall #### Specific humidity (JJAS) Total precipitable water (JJAS) a) Total Precipitable Water (JJAS) - ERA Figure 8) Specific Humidity (JJAS) - ERA 600 700 20N 800 900 1000 b) Total Precipitable Water (JJAS) - Zoom b) Specific Humidity (JJAS) - Zoom 600 700 20N 800 900 1000 c) Total Precipitable Water (JJAS) - No Zoom c) Specific Humidity (JJAS) - No Zoom 600 700 20N 800 900 60E 80E 100E 120E 40E 1000 70E 80E 90E 60E (kg.m⁻²) 42.0 **ERA** zoom no zoom $(kg.kg^{-1})$ 0.008 0.012 0.016 0.02 #### Moist Static Energy (x 10³ Jm⁻²) (d) Moist Static Energy (JJAS) - ERA (e) Moist Static Energy (JJAS) - Zoom (f) Moist Static Energy (JJAS) - No Zoom #### Vertical profiles [16N-28N, 65E 100E] Patterns generated by regressing the 850 hPa winds on the index of frequency count (FC) of moderate-to-heavy rainfall. Shading: magnitude of the regression. Unit of regression is ms⁻¹ (std.dev FC)⁻¹. JJAS mean (1951-2005): Source: Ramarao et al. (2015) Earth Sys. Dynam #### Annual mean water balance (mm d⁻¹) components: (1979-2005) # Water balance averaged over 70°-90°E;10°-28°N | | GLDAS | IPSL | LMDZ | |------|-------|-------|------| | Р | 2.63 | 1.81 | 2.97 | | ET | 1.99 | 2.25 | 1.92 | | R | 0.65 | 0.28 | 1.06 | | P-ET | 0.64 | -0.44 | 1.05 | ### The water balance is highlighted Source: MVS. Ramarao, R. Krishnan J. Sanjay, TP. Sabin (2015): ESD # Recent Climate change: IPCC 2013 report Warming of the climate system is unequivocal, and since the 1950s, many of the observed changes are unprecedented over decades to millennia. # Recent climate change report Observed change in average surface temperature 1901–2012 Planet has warmed by 0.85 K over 1880-2012 # The Water Vapor Feedback Temp dependence of saturation vapor pressure $$e_s$$: $e^{-5400/T}$ $$\frac{d \ln e_s}{dT} = \frac{5400}{T^2} \approx 0.06 \quad to \quad 0.1 \quad per \quad K$$ # Projected rainfall Change (2081-2100) #### Wide variations among CMIP5/ CMIP3 models in capturing the South Asian monsoon Realism of present-day climate simulation is an essential requirement for reliable assessment of future changes in monsoon ## South Asian Climate Change Source: IPCC, 2013 (Annex 1) For high emission scenario, ensemble mean warming is about 4 K and precipitation change is about 15% # High-resolution (~ 35 km) modeling of climate change over S.Asia #### Historical (1886-2005): Includes natural and anthropogenic (GHG, aerosols, land cover etc) climate forcing during the historical period (1886 – 2005) ~ 120 years #### *Historical Natural (1886 – 2005):* Includes only natural climate forcing during the historical period (1886–2005) ~ 120 yrs #### RCP 4.5 scenario (2006-2100) ~ 95 years: Future projection run which includes both natural and anthropogenic forcing based on the IPCC AR5 RCP4.5 climate scenario. The evolution of GHG and anthropogenic aerosols in RCP4.5 produces a global radiative forcing of $+ 4.5 \text{ W m}^{-2}$ by 2100 Runs performed on PRITHVI, CCCR-IITM #### CO2 concentration in future IPCC AR5 scenarios #### Aerosol distribution from IPSL ESM Table 2 Summary of the LMDZ4 experimental design | Expt. | Period | Forcing | Cumulus | SST forcing | |-------------|------------------------------|-----------------------------|------------|--| | | | 2 01 1126 | convection | 55210125 | | HIST1 | Historical: | Natural and | Emanuel | SST_ANOM_IPSL_CM5A_HIST | | | (1886 - 2005) | Anthropogenic | | | | 1 | | forcings | | , , , , , , , , , , , , , , , , , , , | | | | | | SST_AMIP_CLIM | | HISTNAT1 | Historical: | Natural only | Emanuel | SST_ANOM_IPSL_CM5A_HISTNAT | | | (1886 - 2005) | | | + | | | | | | SST_AMIP_CLIM | | HIST2 | Historical: | Natural and | Tiedtke | SST_ANOM_IPSL_CM3A_HIST | | 1 | (1950 - 2005) | Anthropogenic | | + | | 1 | | forcings | | 60T 11 CT 11 | | HISTNAT2 | Historical: | Mahamal ambar | Tiedtke | SST_AMIP_CLIM SST_ANOM_IPSL_CM5A_HISTNAT | | HISTORI 2 | (1950 – 2005) | Natural only | 1 seatste | SSI_ANONI_IPSL_CNDA_HISTNAT | | 1 | (2550 2005) | | | + | | | | | | SST_AMIP_CLIM | | RCP4.5 | Future RCP4.5 | Natural and | Emanuel | SST_ANOM_IPSL_CM5A_RCP4.5 | | 1 | scenario (2006
- 2095) | Anthropogenic
forcings | | + | | 1 | -2055) | nor canages | | SST AMIP CLIM | | HIST1 GHG | Historical | Natural and | Emanuel | SST_ANOM_IPSL_CM5A_HIST_GHG | | 12311_0110 | (1950 - 2000) | GHG-only | | SST_ALVORT_BSD_CSDAT_TEST_GRO | | 1 | Decadal time | forcings. Land | | + | | 1 | slice runs for | use and serosol | | SST_AMIP_CLIM | | 1 | (1951-1960), | fields are set to | | | | 1 | (1961-1970), | 1886 values | | | | 1 | (1971-1980),
(1981-1990), | | | | | 1 | (1991-2000) | | | | | HIST1_PIGHG | Historical: | Includes Natural | Emanuel | SST_ANOM_IPSL_CM5A_HIST | | | Decadal time | variations, | | <u> </u> | | 1 | slice runs for | Aerosol forcing | | | | 1 | (1951-1960),
(1961-1970), | and Land-use
change. The | | SST_AMIP_CLIM | | 1 | (1961-1970), | concentration of | | | | 1 | (1981-1990). | GHGs are set to | | | | | (1991-2000) | 1886 | | | # Spatial map of JJAS rainfall trends (1951-2005). Units mm day⁻¹ (55 yr)⁻¹ #### Time-series (1951-2005): JJAS rainfall averaged (70-90E; 10-28N) | | Rainfall trend | Mean rainfall
(mm day ⁻¹) | % change w.r.t
mean rainfall | P value based on two tailed student's t test | |-------------------------|---|--|---------------------------------|--| | IMD dataset (1951-2005) | -0.55 units mm day ⁻¹ (55 years) ⁻¹ | 7.5 | -7 | <0.01 | | HIST1 (1951-2005) | -1.1 units mm day-1 (55 years)-1 | 6.9 | -16 | <0.01 | | HIST2 (1951-2005) | -0.55 units mm day ⁻¹ (55 years) ⁻¹ | 6.3 | -9 | <0.01 | | HISTNAT1 (1951-2005) | -0.03 units mm day ⁻¹ (55 years) ⁻¹ | 8.3 | -0.3 | 0.54 (not significant) | | HISTNAT2 (1951-2005) | -0.1 units mm day ⁻¹ (55 years) ⁻¹ | 6.9 | -1 | 0.2 (not significant) | | RCP4.5 (2006-2060) | -1.1 units mm day $^{-1}$ (55 years) $^{-1}$ | 6.6 | -17 | <0.01 | | RCP4.5 (2006-2095) | -0.29 units mm day -1 (90 years) -1 | 6.6 | -5 | <0.01 | ### Mean difference maps (All-forcing minus Natural) during 1951-2005 #### JJAS rainfall and 850 hPa winds #### Decomposing the monsoon response to GHG and regional forcing Fig. 6 Decomposing the monsoonal response to GHG and regional forcing elements Composite difference maps of the simulated June-September precipitation (mm day⁻¹) and 850 hPa winds (ms⁻¹), a δ(No_GHG) = HIST1 minus HIST1_GHG, b δ(GHG) = HIST1_ GHG minus HISTNAT1, c δ (GHG_Atmos) = HIST1 minus HIST1_ PIGHG, d δ (GHG_SST) = δ (GHG) minus δ (GHG_Atmos). The composite maps are constructed for the period (1951–2000) using the decadal time-slices #### (HIST minus HISTNAT): 1951-2002 Fig. 8 Spatial maps of land-use used in the LMDZ4 experiments, a Mean tree-fraction (%) for the period 1951-2000. b Same as a except for cropfraction (%). c Change in tree-fraction (%) shown by difference [(1891-1930) minus (1951-2000)] map. d Same as e except for crop-fraction (%). Note the larger spatial coverage of tree area over South and Southeast Asia and China during (1891-1930) relative to (1951-2000); while the crop area coverage was less during (1891-1930) relative to (1951-2000) 40E 60F 0 5 80F 100E 10 15 20 25 30 120E #### Anthropogenic Aerosol Forcing @ TOA (a) 30N 20N 10N Eq 108 **(b)** Atmospheric absorption (TOA - SFC) 30N 20N 10N Eq 108 80E 120E 160E Fig. 9 Spatial distribution of mean anthropogenic aerosol forcing from the HIST1 experiment during 1951–2005. a Anthropogenic aerosol forcing (Wm⁻²) at the top-of-atmosphere (TOA). b Atmospheric absorption (Wm⁻²) due to anthropogenic aerosols (i.e., aerosol-forcing @ TOA minus aerosol-forcing @ Surface). The mean aerosol forcing is computed for the JJAS season from the HIST1 simulation during the period 1951–2005 #### Map of JJAS SST trend (1951-2005) 1951 1961 1971 1981 Year 1991 2001 Fig. 10 Tropical Indian Ocean SST warming trend during (1951-2005). a Spatial pattern of linear trend of SST (°C per 55 years) from the IPSL-CM5A-LR simulation. b Time-series of equatorial Indian Ocean SST (IOSST in °C) anomalies averaged over the region (5°S-5°N, 60°-90°E) from HadISST (black line), IPSL-CM5A-LR (green line), IPSL-CM5A-MR (purple), ensemble mean of CMIP5 models (red line). The grey shading shows the spread of SST anomalies simulated across the CMIP5 models, c Timeseries of IOSSTδGM anomalies (°C) (IOSST&GM = EOIOSST minus Global Mean SST) for HadISST (black line), IPSL-CM5A-LR (green line). The rapid warming of IOSST&GM is apparently linked to weakening of the summer-monsoon cross-equatorial flow in recent decades (Swapna et al. 2014) #### Long term trends of SST and surface winds over the Tropical Indian Ocean P. Swapna, R. Krishnan & J. M. Wallace, Climate Dynamics, 2013 June – September (JJAS) Rest of the year Fig. 1 Upper panels show trends in sea surface temperature (SST in °C per 62 years; the departure from the global mean SST) and ERA surface winds (m s⁻¹ per 54 years) in the tropical Indian Ocean (IO) for the summer monsoon season, a June-September; **b** the remaining calendar months. Color shading indicates the magnitude of SST trends and the contour corresponds to 99 % confidence level based on the Student's t test (see Balling et al. 1998). The lower panels show timeseries of SST (°C) bars and ERA zonal wind anomalies (m s⁻¹, red lines) averaged over the equatorial IO (50°E-100°E, 5°S-5°N). c June-September and d the remaining calendar months. The trends of the linear regression best-fit lines exceed the 95 % confidence level # Drying of Indian subcontinent by rapid Indian Ocean warming and a weakening land-sea thermal gradient Roxy Mathew et al. 2015 Nature Comm. **Figure 2 | Summer sea surface temperature trends for the years 1901–2012.** Observed trend in mean summer (June-September) SST (°C 112 year⁻¹) over the global tropics during 1901–2012. ## Time-series of regional forcing & simulated response ### Weakening of monsoon Hadley-type overturning Latitude Pressure sections of difference plots of meridional overturning circulation anomalies #### Response of tropospheric temperature & large-scale circulation to Anthropogenic forcing #### HIST minus HISTNAT (1951 – 2005): Winds & temperature vertically averaged 600-200 hPa #### Time-series of year-wise count of heavy rain events (intensity > 100 mm/day) over Central India Table 4 Summary of trends in the frequency of heavy precipitation events over Central India, with intensities ≥ 100 mm day⁻¹, from IMD observations and LMDZ4 simulations | | Trend in the frequency count | Mean frequency
count | % change w.r.t mean
frequency count | P value based on the two tailed student's t test | |-------------------------|------------------------------------|-------------------------|--|--| | IMD dataset (1951-2005) | 430 units (55 years)-1 | 1448 | 30 | <0.01 | | HIST1 (1951-2005) | 499 units (55 years)-1 | 1652 | 30 | <0.01 | | HIST2 (1951-2005) | 638 units (55 years) ⁻¹ | 1507 | 42 | <0.01 | | HISTNAT1 (1951-2005) | -34 units (55 years) ⁻¹ | 1356 | -3 | 0.2 (not significant) | | HISTNAT2 (1951-2005) | +6 units (55 years) ⁻¹ | 1233 | 0.5 | 0.8 (not significant) | | RCP4.5 (2006-2095) | 750 units (90 years)-1 | 1976 | 38 | <0.01 | #### Changes in Heavy & Moderate precipitation types to GHG & regional Central India: 74.5°E – 86.5°E, 16.5°N - 26.5°N Period:1951-2000 Frequency counts for both categories are relative to HISNAT ### Summary - •Study of the Indian monsoon in maintaining interactions among different scales (large scale, synoptic system, meso-scale) - •Zoomed version of LMDZ, forced by SST, without lateral boundary condition - •High resolution improves monsoon simulation, both in terms of precipitation and interactions between precipitation and atmospheric circulation eg., cyclonic systems around monsoon trough. The dry bias of the **NO ZOOM** simulation inhibits moist convective systems and limits westward extension of monsoon precipitation - •Long-term climate change experiments using the high-resolution LMDZ model highlight several value additions as compared to coarse resolution simulations - •The high-resolution simulation with anthropogenic forcing captures the decreasing trend of Indian monsoon precipitation in the post-1950s. Recent monsoon decline is likely influenced by regional forcing elements (ie., anthropogenic aerosols, land use and land cover change, equatorial Indian Ocean warming - •Robust increase in frequency of heavy precipitation (R > 100 mm/day) occurrences over Central India is noted in the high-resolution climate change simulation ### Limitations of the present study - •Absence of atmosphere-ocean coupling in stand-alone atmospheric GCMs is a limitation for studying the South Asian monsoon coupled system - Strong internal variability of the South Asian monsoon system - •Single realization for HIST1 (Emanuel Convection) and HIST2 (Tiedtke Convection) - Separating the effects of aerosol forcing and land-use change? - Indian Ocean Warming Signal (decadal variability and long-term trend): Not adequately understood - •Way Forward ? #### THE IITM EARTH SYSTEM MODEL Transformation of a Seasonal Prediction Model to a Long-Term Climate Model BY P. SWAPNA, M. K. ROXY, K. APARNA, K. KULKARNI, A. G. PRAJEESH, K. ASHOK, R. KRISHNAN, S. MOORTHI, A. KUMAR, AND B. N. GOSWAMI This work documents the fidelity of the newly developed Indian Institute of Tropical Meteorology climate model simulations and demonstrates its suitability to address the climate variability and change issues relevant to the South Asian monsoon. IITM-ESM - Radiatively balanced system. Realistic global climate. Mean monsoon rainfall & interannual variability captured ENSO-Monsoon tele-connections and PDO - Pacific Decadal Oscillation are robust Improvements in sea-ice and Atlantic THC Time-varying aerosol properties and landuse land cover to be used for CMIP6 **Interactive Ocean Biogeochemistry** ESMv1 _ CFSv2 # Thank you