

WCRP CORDEX South Asia Planning Meeting

25 - 26 February 2012 Indian Institute of Tropical Meteorology (IITM), Pune, India

Panel Discussion: Follow up Plans for Implementation of CORDEX South Asia Co-chairs: (P.V. Joseph, Ola Johannessen, R. Krishnan)

Panelists: (Akio Kitoh, Lasse Petterson, Joakim Langner, S.K. Dash, K. Krishna Kumar, K. Ashok, Michel Rixen, Christine Chan)

Coordinated strategy for resource mobilization and communication

(Expert: Bruce Hewitson, Moderator: Milind Mujumdar, Rapporteurs: Ramesh Vellore and S.S. Sabade)

Regional impact assessment

- ■Regional Climate Monsoons, Extremes (Floods, Droughts, Heat waves, etc) IITM active role in validation, verification and diagnosis of model outputs and observations
- Water Resources (IITM will collaborate with other Hydrological Research groups)
- Agriculture (IITM will share climate model projections with Agriculture Research groups)
- ■Health (IITM will share climate model projections with Health Research groups)

Impact Assessment Groups:

India: (eg. IISc, IITB, IITD, NIH, CWPRS, IARI, Universities, Research Institutes etc)

Nepal:

Bhutan:

Pakistan:

Bangladesh:

Sri Lanka:

Maldives:

- •Training aspects Introduction to regional climate models, Analysis of model outputs, Application tools: GrAds, Ferret, CDO, etc IITM active role
- •Climate Data Web Portal

Macroscale Hydrologic Modeling

Applications to Indian river basins

Source: Priya, CCCR, IITM

Macroscale Hydrologic Modeling

Hydrologic Impacts of Climate Change

- Variable Infiltration Capacity (VIC) macroscale model (Liang et al., 1994) over Indian region
 - Subgrid variability in land surface vegetation classes
 - Subgrid variability in the soil moisture storage capacity, which is represented as a spatial probability distribution
 - Subgrid variability in topography through the use of elevation bands
 - Spatial subgrid variability in precipitation
- Simulation of water balances
- Inputs are time series of daily or sub-daily meteorological drivers (e.g. precipitation, air temperature, wind speed)
- Land-atmosphere fluxes, and the water and energy balances at the land surface, are simulated at a daily or sub-daily time step
- Daily runoff and baseflow routed using independent routing model (Lohmann et al., 1996)
- Calibration and validation of model using current meteorologic forcings and observed discharge data in three river basins (Narmada, Ganga, Krishna)

Source: Deepashree Raje

VIC-simulated and observed discharges

GCM performances for 20C3M: Annual hydrographs

Narmada Basin River Flow

Data Used: LMDZ Historical Natural

1886 - 1915

Variable resolution configuration (eg., LMDZ runs at IITM; 35 km zooming over South Asia)

Coarser resolution near borders

