Climate Change Adaptation in Water, Agriculture and Livelihood Sectors in Himalaya: Bridging Gap between Climate Science and Local Level Climate Change Adaptation

Prakash Tiwari
Professor of Geography
Kumaun University, Nainital, Uttarakhand, India
Email: pctiwari@gmail.com

The Mountains of the World

MORE THAN 50% OF THE WORLD'S POPULATION
OBTAIN FRESH WATER FROM MOUNTAINS

THE WORLD'S POOREST PEOPLE

LIVE IN MOUNTAINS

MOUNTAINS ENSURE

FOOD SECURITY

FOR THE GROWING GLOBAL POPULATION

MOUNTAINS:

ONE OF THE MOST SENSITIVE REGIONS TO

CLIMATE CHANGE

Hydrological Parameters of Principal Rivers of Hindu Kush Himalaya Glacier River Length Mean **Basin** (km) Discharge Melt in

6,300

 (m^3/s) 34,000

River **Flow (%)** 18.5 12.3

Amu Darya

Yangtze Brahmaputra Ganges

2,948 2,057

19,824 2,170

18,691 13,565

Small 6.6

9.1

Irrawaddy Mekong

4,600

11,048 5,533

44.8

Indus

2,900

1,494

1,365

146

8.8

Salween

2,800

Yellow

Source: ICIMOD

Tarim

5,464

2,030

1.3

40.2

Yangtze Brahmaputra HKH Map with major river basins CHINA KONGGYLI TOO LAK PAKISTAN LRAYSE DZONG #CYANTS WEST BENGAL

82,000 sq.km

MYANMAR

Tarim

Himalaya: Highly Vulnerable to Global Environmental Changes

Natural
Vulnerability

- Young Mountains
- Geo-tectonically Alive
- High Seismicity
- High Altitude
- Steep and Fragile Slopes
- Large Number of Glacial Lakes

Human Induced Vulnerability

- Densely Populated
- Livelihood Constraints
- Poverty and Marginalization
- High Food Deficit
- Constraints of Infrastructure
- Rapid Urban Growth

Climate Change Adaptation in Himalaya: Key Issues

- Climate Change Adaptation is multi-institutional and multi-sectoral governance process at local level
- Mainstreaming Climate Change Adaptation [CCA] and Disaster Risk Reduction [DRR] into overall development process is now emphasized by international and national agencies
- What is the most scientific spatial unit for climate change adaptation and its mainstreaming at micro-level
- How cutting edge state-of-art climate knowledge could to be generated at micro-regional level and transferred to local level institutions
- How climate science can help in building adaptive capacity of local level government officials and representatives of community-institutions
- How the hydro-meteorological information gap could be bridged-up in Himalaya
- How climate knowledge could be integrated in building urban resilience

Kumaun University: Adaptation Initiatives

- Drought Assessment and Adaptive Resource Management in Uttarakhand Himalaya; in collaboration with Newcastle University, UK [Financial Support from Royal Society, UK under its 'Global Challenges' Programme]
- Shimla Climate Change Adaptation Partnership Project, in partnership with Urban Climate Research Network [UCCRN], Columbia University, USA; International City Management Council [ICMA]; and International City-Link Programme [City-Link] [Financial Support from USAID]
- Urban Climate Change Vulnerability Across Hindu Kush Himalaya;
 in association with Yale University, USA; University of British
 Columbia, Canada; and ICIMOD [Financial Support from NASA]
- Climate Change Adaptation Tool-kit Development for Uttarakhand Himalaya, in collaboration with Australian National University, Australia; MAIRS, China; and Newcastle University, UK

Forest-Agriculture-Food-Livelihood in Himalaya

[Only 11% Agricultural Land is Irrigated and Irrigation Potential is Declining]

Due to Constraints of Subsistence Economy Large Proportion of Male Population Out-migrates and this Leads to Feminization of Resource Development Process and Agriculture in Himalaya

Rapid Urbanization Increasing Climate Change Vulnerability 5000 m-High **Drivers of Urbanization: Altitude** Alpine Subsistence Agricultural Economy Zone **Livelihood Constraints** 4000 m · Rural Poverty Population Growth Sub-Alpine Increased Road Connectivity Mountains. Improved Access to Market **Mid-slopes Sparse** Growth of Tourism and Ridges Population, 3000 m-**Extreme Weather Events** 26% Population in Urban areas Mid Temperate Slopes, T3 **High Population** Density 2000 m Lower **Temperate Valleys River** Zone, **High Population** Density, 1000 m-Sub-Tropical Zone, Flood Plain Level Flat Valleys, High Population Density 500 m 50 - 100 km**Approximate Radial Distance**

Climate Change in Himalaya: Observed Impacts and Vulnerabilities

Precipitation Pattern During Monsoon and Winter Season Across the Himalayan States

Status of Water Resources in Western Himalayan Rain-fed Watersheds [1985 – 2015]

Himalayan State [Western Himalaya]	Watershed	% Natural Springs Dried	Wetland Depleted (No)	% Water Discharge Declined
Himachal Pradesh	Ashwani	25	5	11
Himachal Pradesh	Nauti	31	7	15
Himachal Pradesh	Dhalli	39	3	25
Uttarakhand	Gaula	41	6	47
Uttarakhand	Kosi	35	3	37
Uttarakhand	Ramgad	40	7	41

Projected Climate Trends A1B Scenario (2041-2060) Compared to the Baseline Period (1981-2000)

Climate Parameters	Ramgad Watershed, Nainital, Uttarakhand			
	Summer (June-August)	Winter (Nov-March)		
Temperature	Decrease in Max Temp by 1ºC Decrease in Min Temp by 0.39ºC	Increase in Max Temp by 1.5 °C Increase in Min Temp by 2.3 °C		
Precipitation	Overall increase in mean rainfall by 11% or 55 mm, or total of 559 mm over wet season	Overall decrease in mean rainfall by 15% or 34 mm, or total of 194 mm over dry season		
Extreme Events	Increase incidences of High Intensity Rainfall, flash floods and flooding	The dry season will become drier Higher temperatures will lead to more severe droughts and forest fires		

Source: Australian National University, Canberra, Australia; MAIRS, Beijing, China; Newcastle University, Newcastle, UK for APN Project [Climate Change Adaptation Tool Kit Development in Uttarakhand Himalaya 2014-2017]

Climate Change Adaptation Mainstreaming in Development Planning: A Multi-institutional Governance Process in Uttarakhand

The Spatial Scale of Adaptation

Top-down and Bottom-up Approaches for Assessing Climate Change Vulnerability and Evolving Adaptation Framework

Uttarakhand: Micro-watersheds

Integrating Climate Change Adaptation and Disaster Risk Reduction at Watershed Level: The Complementariness of Key Components

Local Institutions: Key Actors in Climate Change Adaptation Governance

Location Map

